192 research outputs found

    Analogy-making in the Semai sensory world

    No full text
    In the interplay between language, culture, and perception, iconicity structures our representations of what we experience. By examining secondary iconicity in sensory vocabulary, this study draws attention to diagrammatic qualities in human interaction with, and representation of, the sensory world. In Semai (Mon-Khmer, Aslian), spoken on Peninsular Malaysia, sensory experiences are encoded by expressives. Expressives display a diagrammatic iconic structure whereby related sensory experiences receive related linguistic forms. Through this type of formmeaning mapping, gradient relationships in the perceptual world receive gradient linguistic representations. Form-meaning mapping such as this enables speakers to categorize sensory events into types and subtypes of perceptions, and provide illustrates how a diagrammatic iconic structure within sensory vocabulary creates networks of relational sensory knowledge. Through analogy, speakers draw on this knowledge to comprehend sensory referents and create new unconventional forms, which are easily understood by other members of the community. Analogy-making such as this allows speakers to capture fine-grained differences between sensory events, and effectively guide each other through the Semai sensory landscape. sensory specifics of various kinds. This studyillustrates how a diagrammatic iconic structure within sensory vocabulary creates networks of relational sensory knowledge. Through analogy, speakers draw on this knowledge to comprehend sensory referents and create new unconventional forms, which are easily understood by other members of the community. Analogy-making such as this allows speakers to capture fine-grained differences between sensory events, and effectively guide each other through the Semai sensory landscape

    Immunospecific Antibody Concentration in Egg Yolk of Chickens Orally Immunised with Varying Doses of Bovine Serum Albumin and the Mucosal Adjuvant, RhinoVax®, using Different Immunization Regimes

    Get PDF
    Antibody harvested from eggs of immunised chickens, IgY, has proven to be a non-invasive alternative to  antibodies purified from serum of mammals. Taking the non-invasive concept further, the development of  oral immunization techniques combined with IgY harvest from chicken eggs may subsequently eliminate  all regulated procedures from polyclonal antibody production. In the present study, we report the effects of  varying the temporal administration mode of the antigen (immunogen) comparing dosing on three consecutive  days with dosing on five consecutive days, and of incorporating a mucosal adjuvant. Two antigen  doses were compared: 30 mg bovine serum albumin (BSA) and 300 mg BSA, with and without the mucosal  adjuvant, RhinoVax®, administered to laying chickens. The egg yolk of chickens dosed with BSA in combination  with 20% RhinoVax®, contained significantly higher concentrations of immunospecific IgY than  did egg yolks of chickens fed with BSA without adjuvant. The most efficient dose in the RhinoVax®-treated  groups was 300 mg BSA regardless of whether the chickens were initially immunised daily for three or  five days. A 3-day dosing regime with BSA alone also induced immunospecific IgY production. This study  confirms that RhinoVax® is an efficient oral adjuvant. It also demonstrates the efficacy of daily immunizations  on three or five consecutive days on immunospecific IgY production. The chickens received oral  booster immunizations one and two months after the initial immunization. No real effect could be recorded  after the second and third immunization, although the study did provide some evidence of memory  based on an optimum IgY concentration recorded after the 2nd immunization.

    Outdoor-to-Indoor Office MIMO Measurements and Analysis at 5.2 GHz

    Full text link

    Altered fibroblast proteoglycan production in COPD

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Airway remodeling in COPD includes reorganization of the extracellular matrix. Proteoglycans play a crucial role in this process as regulators of the integrity of the extracellular matrix. Altered proteoglycan immunostaining has been demonstrated in COPD lungs and this has been suggested to contribute to the pathogenesis. The major cell type responsible for production and maintenance of ECM constituents, such as proteoglycans, are fibroblasts. Interestingly, it has been proposed that central airways and alveolar lung parenchyma contain distinct fibroblast populations. This study explores the hypothesis that altered depositions of proteoglycans in COPD lungs, and in particular versican and perlecan, is a result of dysregulated fibroblast proteoglycan production.</p> <p>Methods</p> <p>Proliferation, proteoglycan production and the response to TGF-β<sub>1 </sub>were examined <it>in vitro </it>in centrally and distally derived fibroblasts isolated from COPD patients (GOLD stage IV) and from control subjects.</p> <p>Results</p> <p>Phenotypically different fibroblast populations were identified in central airways and in the lung parenchyma. Versican production was higher in distal fibroblasts from COPD patients than from control subjects (p < 0.01). In addition, perlecan production was lower in centrally derived fibroblasts from COPD patients than from control subjects (p < 0.01). TGF-β<sub>1 </sub>triggered similar increases in proteoglycan production in distally derived fibroblasts from COPD patients and control subjects. In contrast, centrally derived fibroblasts from COPD patients were less responsive to TGF-β<sub>1 </sub>than those from control subjects.</p> <p>Conclusions</p> <p>The results show that fibroblasts from COPD patients have alterations in proteoglycan production that may contribute to disease development. Distally derived fibroblasts from COPD patients have enhanced production of versican that may have a negative influence on the elastic recoil. In addition, a lower perlecan production in centrally derived fibroblasts from COPD patients may indicate alterations in bronchial basement membrane integrity in severe COPD.</p

    Role of cellular senescence and NOX4-mediated oxidative stress in systemic sclerosis pathogenesis.

    Get PDF
    Systemic sclerosis (SSc) is a systemic autoimmune disease characterized by progressive fibrosis of skin and numerous internal organs and a severe fibroproliferative vasculopathy resulting frequently in severe disability and high mortality. Although the etiology of SSc is unknown and the detailed mechanisms responsible for the fibrotic process have not been fully elucidated, one important observation from a large US population study was the demonstration of a late onset of SSc with a peak incidence between 45 and 54 years of age in African-American females and between 65 and 74 years of age in white females. Although it is not appropriate to consider SSc as a disease of aging, the possibility that senescence changes in the cellular elements involved in its pathogenesis may play a role has not been thoroughly examined. The process of cellular senescence is extremely complex, and the mechanisms, molecular events, and signaling pathways involved have not been fully elucidated; however, there is strong evidence to support the concept that oxidative stress caused by the excessive generation of reactive oxygen species may be one important mechanism involved. On the other hand, numerous studies have implicated oxidative stress in SSc pathogenesis, thus, suggesting a plausible mechanism in which excessive oxidative stress induces cellular senescence and that the molecular events associated with this complex process play an important role in the fibrotic and fibroproliferative vasculopathy characteristic of SSc. Here, recent studies examining the role of cellular senescence and of oxidative stress in SSc pathogenesis will be reviewed

    Functional and phenotypical comparison of myofibroblasts derived from biopsies and bronchoalveolar lavage in mild asthma and scleroderma

    Get PDF
    BACKGROUND: Activated fibroblasts, which have previously been obtained from bronchoalveolar lavage fluid (BALF), are proposed to be important cells in the fibrotic processes of asthma and scleroderma (SSc). We have studied the motility for BALF derived fibroblasts in patients with SSc that may explain the presence of these cells in the airway lumen. Furthermore, we have compared phenotypic alterations in activated fibroblasts from BALF and bronchial biopsies from patients with mild asthma and SSc that may account for the distinct fibrotic responses. METHODS: Fibroblasts were cultured from BALF and bronchial biopsies from patients with mild asthma and SSc. The motility was studied using a cell migration assay. Western Blotting was used to study the expression of alpha-smooth muscle actin (α-SMA), ED-A fibronectin, and serine arginine splicing factor 20 (SRp20). The protein expression pattern was analyzed to reveal potential biomarkers using two-dimensional electrophoresis (2-DE) and sequencing dual matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-TOF). The Mann-Whitney method was used to calculate statistical significance. RESULTS: Increased migration and levels of ED-A fibronectin were observed in BALF fibroblasts from both groups of patients, supported by increased expression of RhoA, Rac1, and the splicing factor SRp20. However, these observations were exclusively accompanied by increased expression of α-SMA in patients with mild asthma. Compared to BALF fibroblasts in mild asthma, fibroblasts in SSc displayed a differential protein expression pattern of cytoskeletal- and scavenger proteins. These identified proteins facilitate cell migration, oxidative stress, and the excessive deposition of extracellular matrix observed in patients with SSc. CONCLUSION: This study demonstrates a possible origin for fibroblasts in the airway lumen in patients with SSc and important differences between fibroblast phenotypes in mild asthma and SSc. The findings may explain the distinct fibrotic processes and highlight the motile BALF fibroblast as a potential target cell in these disorders

    Synthesis of Oleoylethanolamide Using Lipase

    Get PDF
    An effective process for the enzymatic synthesis of oleoylethanolamide is described in this study. The process included purification of a commercial oleic acid product and then optimization of the reaction between the purified oleic acid and ethanolamine in the presence of hexane and a lipase. Under the optimal amidation reaction conditions identified, oleoylethanolamide was obtained with 96.6% purity. The synthesis was also conducted on a large scale (50 mmol of each of the reactants), and oleoylethanolamide purity and yield after crystallization purification were 96.1 and 73.5%, respectively. Compared to the previous studies, the current method of preparing high-purity oleoylethanolamide is more effective and economically feasible. The scalability and ease for such synthesis make it possible to study the biological and nutritional functions of the cannabinoid-like oleoylethanolamide in animal or human subjects

    What drives sound symbolism? Different acoustic cues underlie sound-size and sound-shape mappings

    Get PDF
    Sound symbolism refers to the non-arbitrary mappings that exist between phonetic properties of speech sounds and their meaning. Despite there being an extensive literature on the topic, the acoustic features and psychological mechanisms that give rise to sound symbolism are not, as yet, altogether clear. The present study was designed to investigate whether different sets of acoustic cues predict size and shape symbolism, respectively. In two experiments, participants judged whether a given consonant-vowel speech sound was large or small, round or angular, using a size or shape scale. Visual size judgments were predicted by vowel formant F1 in combination with F2, and by vowel duration. Visual shape judgments were, however, predicted by formants F2 and F3. Size and shape symbolism were thus not induced by a common mechanism, but rather were distinctly affected by acoustic properties of speech sounds. These findings portray sound symbolism as a process that is not based merely on broad categorical contrasts, such as round/unround and front/back vowels. Rather, individuals seem to base their sound-symbolic judgments on specific sets of acoustic cues, extracted from speech sounds, which vary across judgment dimensions
    • …
    corecore